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ABSTRACT: The Bianchi type V cosmological model for Bulk viscous barotropic fluid with variable gravitational 
constant [G(t)], and the variable cosmological constant [ �(�) ], in presence of magnetic field is investigated. To get a 

determinate model, we impose a physically viable conditions between metric potentials. We have also used, � =�	, 
��  � = ��	�, where 	 is energy density, � is shear viscosity, and � = � − ��� with   � ≤ � ≤ �. H is the well 

known Hubble parameter. Some physical and kinematical characteristics of the model are also discussed in presence 

and absence of the magnetic field. We obtained  
�
� ≠ �, hence anisotropy is maintained throughout.  The considered 

model represents inflationary scenario. 
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I. INTRODUCTION 

Beesham (1986) points out that the observations seems to varying Gravitational constant G is inversely proportional with respect 
to time Rahman (1990) studied varying  Gravitational constant G and cosmological constant Λ and obtained G increases and Λ 

decreases with time in a manner consistent with  conservation of the energy momentum tensor. Berman (1991); Kalligas et al. 

(1992) also find that the cosmological term at early universe was very high. The sign of curvature for Bianchi type-V is always 
negative and it represents a model with open universe Beesham (1986). The type-V spaces constitute the natural generalization of 
the � = −1, Friedmann-Robertson-Walker models. Open models are favored by low-density Gott (1974) universe. The Bianchi 

type-V models have been investigated by a number of authors. Schucking and Heckmann have studied Bianchi type-V models 

with �� orthogonal to the hypersurfaces of homogeneity.  Matzner (1969) have obtained some exact solutions for Bianchi type-V 

models. Beesham (1986) derived tilted Bianchi type - V cosmological models in the scale-covariant theory for radiative as well 
as non-radiative case. Nayak and Sahoo (1989) have discussed the evolution of the nontilted, diagonal, nonlocally rotationally 
symmetric Bianchi Type V models with a matter distribution that allows anisotropic pressure and heat flow. They found that if 
the entropy of Bianchi type-V models is assumed to be increasing, the anisotropy density necessarily decreases faster than the 
case with perfect fluid as the source. Billyard  et al. [9] have studied scalar field cosmologies with barotropic matter models of  
Bianchi class B. Matter fields such as magnetic fields have a profound influence on the evolution and properties of galaxies Bali 
& Kumawat (2008). It has been conjectured that the early Universe was  an undifferentiated soup of matter and radiation in a 
state of thermal equilibrium. The incorporation of an electromagnetic field and matter into the space-time of Bianchi type-V with 

equation of state � =  , has been given by Ftaclas and Cohen. Lorenz (1981) has discussed an exact Bianchi type-V tilted 

cosmological model with matter and  electromagnetic field. Singh has investigated the Bianchi type-V cosmological solutions of 
massive strings in the presence and absence of the magnetic field. Bali and Sharma (2004) analyzed  Tilted Bianchi type  I 
cosmological models for barotropic perfect fluid in general  relativity.  Bali and Jain (2007) examine the Bianchi type V 
magnetized string dust cosmological model for perfect fluid distribution is investigated.  
Weinberg  (1967) suggested that Λ is a function of temperature and is related to the spontaneous symmetry breaking process. 
FRW cosmology in such a way that the models without a cosmological constant seem to be effectively ruled out [16]. Bali and 
Bali and Tinker (2008) have investigate the Bianchi type-V bulk viscous barotropic fluid cosmological model with variable 
gravitational constant G and the cosmological constant  Λ. Using these two forms, Einstein’s field equations for perfect fluid 

Bianchi type-V models are solved separately that correspond to singular and non-singular models respectively. Bali (2008) 
proposed Bianchi Type V magnetized string dust universe with variable magnetic permeability is investigated. The magnetic 

field is due to an electric current produced along x-axis. Thus !"# is the only non-vanishing component of electro-magnetic field 

tensor  !�$. Maxwells equations !%&'; �) = 0; !�$;$ = 0 are satisfied by !"# = constant. Kumar and Srivastava (2013) have studied 

some new aspects of the Bianchi type-V space time. The Electric and Magnetic parts of Weyl tensors are calculated in terms of 
tilted congruence and discussed the purely magnetic Weyl tensor. Einstein field equations for purely magnetic space time are 
obtained and solution of such field equations called purely magnetic solution. Borkar et al. (2013) have studied Bianchi type I 
bulk viscous barotropic fluid cosmological model with varying Λ and functional relation on Hubble parameter in self-creation 

theory of gravitation Borkar & Ashtankar (2013). The cosmological constant Λ is found to be a positive decreasing function of 

time Chawla et al. (2012); Chaubey and Shukla (2017) have corroborated by results from recent Supernovae Ia observations. 

et
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Tiwari et al. (2021) have studied Accelerating universe with varying Λ in f(R, T) theory of gravity. The possibility of variable G 
is considered by Dirac (1937). Weinberg (1967) suggested that Λ is a function of temperature and is related to the spontaneous 

symmetry breaking process. Many author’s obtained that gravitational constant G and cosmological constant Λ are ~ ,-"~.-". 

Recently modification taken by Bali and Tinker (2008) have Bianchi type-V bulk viscous barotropic fluid cosmological model 

with variable G and Λ, throughout the paper the author’s obtained Λ ∝ 0
12 and the gravitational constant G increases with time t. 

The organization of this paper as follows: In section 2, we have established Einstein field Equation in next section we solve them 
when using 3 = 45, 6 = 6789  and � = :8 , (0 ≤ : < 1). In section 4 we discussed the graphical behavior of the models, finally 

we conclude.  

II. BIANCHI TYPE-V MODEL AND FIELD EQUATIONS 

Let us consider Bianchi Type V model representation in the form <=" = −<." + ?"<@" + A"B(3"<C" + 4"<D") (2.1) 
Einstein's Field Equation is given by 

,�$ − 0
" ,E�$ = −8GHI�$ +ΛE�$     (2.2) 

Where G and Λdefined gravitational constant and cosmological constant respectively, function of time t.  

The representation of energy momentum tensor,  I�$ as, 

I�$ = (8 + J)K�K$ + JE�$ + L�$         (2.3) 

Here  L�$ denoted as Magnetic field [15, 3] and expansion of it  

L�$ = M̅ O|ℎ|" RK�K$ + 0
" E�$S − ℎ�ℎ$T      (2.4) 

with 

ℎ� = √-V
"WX  �$YZ!YZK$    (2.5) 

The non-vanishing component of electromagnetic field tensor is, !"# = [, where [ is constant. 

We assume J = � − 36]   (2.6) 

where � is the equilibrium pressure, 6 is the coefficient of viscosity and 8is the energy density, together with   K�K$ = −1. 

To get deterministic model in terms of cosmic time t, we have assume that magnetic permeability M̅  is a variable quantity and 

assumed as  M̅  = e-_`.  
Einstein's field equation (2.2) for the Bianchi Type-V metric (2.1) with using equations [2.3-2.5] gives, 
abb

a + cbb
c + abcb

ac − 0
d2  = −8GH RJ − e2

"a2c2S  +Λ  (2.7) 

dbb
d + cbb

c + dbcb
dc − 0

d2  = −8GH RJ + e2
"a2c2S  + Λ   (2.8) 

abb
a + dbb

d + abdb
ad − 0

d2  = −8GH RJ + e2
"a2c2S +Λ   (2.9) 

dbab
da + dbcb

dc + abcb
ac − #

d2  = 8GH R8 + e2
"a2c2S +Λ  (2.10) 

"db
d − ab

a − cb
c = 0     (2.11) 

In the above field equations Suffix 4 represents differentiation with respect to time .. 

The divergence of Einstein tensor gives one extra equation, the relation between %H(.)) and %Λ(t)), i.e. R,�$ − 0
" E�$S;$ = 0  

Which leads to g8GHI�$ −ΛE�$h;$ = 0, then 

8GH O "e2
a2c2 + (J + 8) Rdb

d + ab
a + cb

c S + 8_T + 8GH_ R8 + e2
"a2c2S +Λ_ = 0,  (2.12) 

the conservation of energy after using 
"e2

a2c2 + (� + 8) Rdb
d + ab

a + cb
c S + 8_ = 0         (2.13) 

Now taking the relation, 6 = 6789                (2.14) 

η7 is a positive number and s is constant. To find the complete solution for the model, we assume the condition 

� = :8 , (0 ≤ : < 1)  (2.15) 

III. SOLUTIONS OF THE FIELD EQUATIONS 

Here we solve the Einstein field equations 

Equations (2.8) and (2.9) lead to cbb
c + dbcb

dc = abb
a + dbab

da    (3.1) 

Using  equation (2.11) in equation (3.1) we obtain, 
abb

a + 0
" Rab

a S" = cbb
c + 0

" Rcb
c S"

  (3.2) 

These field equations are five nonlinear ordinary differential equations in seven unknowns, so we need at least two constraints to 
solve them exactly. We take, 3 = 45  (3.3) 

Where n is a positive constant. 
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Using equation (3.3) in equation (3.2) we get, 

cbb
c = R5-i

252jk
2S

(5-0) . Rcb
c S"

  (3.4) 

Integrating equation (3.4) with respect to the time variable we get, 

4 = %(1 − m)(�0. + �")) k
(kno)     (3.5) 

Here m = "5-#52j0
"(5-0) , �0 and �" are constants of integration. 

Putting the value of C from equation (3.5) in equation (3.3) we have 

3 = %(1 − m)(�0. + �")) p
(kno)  (3.6)  

and 

? = �#%(1 − m)(�0. + �")) pqk
2(kno)       ,   (3.7) 

where �# is a constant of integration. 

Hence metric (2.1) leads to the following form 

<=" = −<." + �#"%(1 − m)(�0. + �"))(pqk)
(kno)<@" + A"B r%(1 − m)�0. + �") 2p

(kno)<C" + %(1 − m)�0. + �") 2
(kno)<D"s  (3.8) 

After using suitable transformation the metric (2.1) reduces to 

<t" = − 0
Yk2 <I" + %(1 − m)I) pqk

(kno)<u" + A"B%(1 − m)I) 2p
(kno)<v" + A"B%(1 − m)I) 2

(kno)<w"  (3.9) 

Where  �#@ = u, C = v, D = w, = = t, and �0. + �" = I. 

IV. SOME PHYSICAL PARAMETERS  

Subtracting equation (2.7) from (2.10) we get, abb
a + cbb

c − dbab
da − dbcb

dc + "
d2  = −8GH(J + 8)                                                                         (4.1) 

Using equations (3.5)-(3.7) and (2.15) the equation (4.1) becomes 

−8GH = x(5j0)ybby -r(pqk)2
2 sRyby S2j z

y(2pq2){
(0j|)}-#~�                                                                                     (4.2) 

From equation (2.13) 

8_ + #(0j|)(5j0)
" . cb

c . 8 = − "e2
c(2pq2)                                                                                             (4.3) 

Using first order linear differential equations techniques we get density of the model is, 
 

8 = 0
�� . �-"e2

� . 0
Yk . �(�qk)

(�j0) + ��                                                                                                    (4.4) 

Where L is constant of integration. 
Where, 

� = #(0j|)(5j0)
"(0-�)                                                                                                                           (4.5) 

� = (#|-0)(5j0)
"(0-�)                                                                                                                            (4.6) 

< = (1 − m)R2(pqk)
kno S

                                                                                                                   (4.7) 
Equation (2.15) gives pressure of the model as, 

� = |
�� . �-"e2

� . 0
Yk . �(�qk)

(�j0) + ��                                                                                                    (4.8) 

Using the equation (3.5) and equation (4.4) in equation (4.2) 

8GH = − x(� + 1)�0"m − R(5j0)2
" S �0" + 8%(1 − m)I)n2(pqk)

(kno) j"{
�(0-�)2(0j|)

��n2 . R-"e2
� . 0

Yk . �(�qk)
(�j0) + �S − 367 � 0

�� . R-"e2
� . 0

Yk . �(�qk)
(�j0) + �S�

9
. (5j0)

" . �0%(1 − m)I)�
 

                                                                                                                                                   (4.9) 
For variable cosmological constant  Λ from equation (2.10) 

Λ(.) =
x(� + 1)�0"m − R(5j0)2

" S �0" + 8%(1 − m)I)n2(pqk)
(kno) j"{ . � 0

�� . R-"e2
� . 0

Yk . �(�qk)
(�j0) + �S + e2

"%(0-�)�)2(pqk)(kno)
�

�(0-�)2(0j|)
��n2 . R-"e2

� . 0
Yk . �(�qk)

(�j0) + �S − 367 � 0
�� . R-"e2

� . 0
Yk . �(�qk)

(�j0) + �S�
9

. (5j0)
" . �0%(1 − m)I)�

 

+ (52j_5j0)Yk2
"%(0-�)�)2 − 0"

%(0-�)�)2(pqk)(kno)
                                                                                                  (4.10) 

As we have taken condition for bulk viscosity 
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6 = 67 . O 0
�� . R-"e2

� . 0
Yk . �(�qk)

(�j0) + �ST9
                                                                                          (4.11) 

 And from equation (6), the total pressure is defined as J = � − 36] 

J = :
I� . �−2["

< . 1
�0 . I(�j0)

(� + 1) + �� − 3. 67 . � 1
I� . �−2["

< . 1
�0 . I(�j0)

(� + 1) + ���
9

. (� + 1)
2 . �0%(1 − m)I) 

                                                                                                                                                  (4.12)   
Hubble parameter is defined as, 

] = 1
3 r?_? + 3_3 + 4_4 s 

] = (5j0)
" . Yk%(0-�)�)                                                                                                                   (4.13) 

Volume of the universe is defined as follows, 

� = ?34 = �# . %(1 − m)I)i(pqk)
2(kno)                                                                                             (4.14) 

Scale factor 

�(.) = �#0/# . %(1 − m)I) (pqk)
2(kno)                                                                                                (4.15) 

Anisotropy parameter 

?� = "(5-0)2
#(5j0)2   (4.16) 

Shear scalar 

�" = (5-0)2
_ . Yk2

%(0-�)(Yk1jY2))2                                                                                                   (4.17) 

� = #(5j0)Yk%(0-�)(Yk1jY2))                                                                                                                  (4.18) 

�
� = (5-0)

#(5j0)                                                                                                                               (4.19) 

V. GRAPHICAL REPRESENTATION 

 
Fig. 1. Variation of density with time.                            Fig. 2. Variation of density with time. 

From equations (4.4) we have plotted Fig. 1, the density reaches to zero from negative value shown by red and blue line whereas 
green and black line represents decreasing density nature at late times to zero for K=2 ,  �0 = 1, �" = 1.5, �# = 2 , � = 1 : = 0.5 

in 2-D diagram with cosmic time. From Fig. 2 for different values of K from -5 to 5 also gives symmetry nature with center K=0, 
for m = 1.25, �0 = 1, �" = 1.5, �# = 2, [ = 2, � = 1 : = 0.5 and � = 0.5. 

 
Fig. 3. Variation of pressure with time.                               Fig. 4. Variation of pressure with time. 
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From equations (4.8) we have plotted Fig. 3, here red and black line overlapped, green line also  decreasing equilibrium pressure 
to zero from positive value for K=2 ,�0 = 1, �" = 1.5, �# = 2 , � = 1 : = 0.5 in 2-D diagram with cosmic time. From Fig. 4, for 

different values of K from -5 to 5 also gives symmetry nature with center K=0, for m = −1.25, �0 = 1, �" = 1.5, �# = 2, [ =2, � = 1 : = 0.5 and � = 0.5. 

 
Fig. 5. Variation of [G(T)] with time.                     Fig. 6. Variation of [G(T)] with time. 

From equations (4.9) we have plotted Fig. 5, shows that all lines of the gravitational constant [G(t)] reaches to zero in late times 
for K=2 in 2-D diagram from Fig. 6, for different values of K from -5 to 5 shows sometimes upwards to zero and sometime 

downwards for different values of K, for m = −1.25, �0 = 1, �" = 1.5, �# = 2 , [ = 2, � = 1, : = 0.5, = = 4, G = ""
� , 6 = 0.4 

and � = 0.5. 

 
Fig. 7. Variation of Λ(I) with time.                                   Fig. 8. Variation of Λ(I) with time. 

From equations (4.10) we have plotted Fig. 7, shows that green and black line of the cosmological constant Λ(I) reaches positive 
to zero whereas red and blue line decreases negative to zero in late times for K=2 in 2-D diagram from Fig. 8, for different values 

of K from -5 to 5 gives symmetry nature with center K=0, for m = −1.25, �0 = 1, �" = 1.5, �# = 2 , [ = 2, � = 1, : = 0.5, = =
4, G = ""

� , 6 = 0.4 and � = 0.5. 

 
Fig. 9. Variation of 6 with time.                                        Fig. 10. Variation of 6 with time. 

From equations (4.11) we have plotted Fig. 9, shows that the bulk viscosity 6 of red , blue and black line reaches positive to zero 

whereas green lines reaches negative to zero but blue line constantly zero in late times for K=2 in 2-D diagram from Fig. 10, for 
different values of K from -5 to 5 also represents the same for different values of K, for m = −1.25, �0 = 1, �" = 1.5, �# = 2,
[ = 2, � = 1, : = 0.5, = = 4, G = ""

� , 6 = 0.4 and � = 0.5 . 
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Fig. 11. Variation of total pressure with time.       Fig. 12. Variation of total pressure with time. 

From equations (4.12) we have plotted Fig. 11, here only black line shows positive nature  of the total pressure J, but red line 

from positive to negative blue always negative and green negative to positive in late times for K=2 in 2-D diagram from Fig. 12, 
for different values of K from -5 to 5 also represents the same for different values of K, for m = −1.25, �0 = 1, �" = 1.5, �# =
2 , [ = 2, � = 1, : = 0.5, = = 4, G = ""

� , 6 = 0.4 and � = 0.5 . 

CONCLUSION 

In this paper we have presented Bianchi Type V barotropic fluid with magnetic field in general relativity. 
The model (3.9) starts with a big bang at I = 0 and the expression in the model decreases as the time increases. The spatial 

volume (V) increases as time (T) increases, when � ≠ −1  or  m ≠ 1. The matter density 8 → ∞ when I → 0, and 8 → 0 when I → ∞ provided : > −1 and � > −1. 

The model (3.9) has point type singularity at I = 0 . Shear scalar  (�) increases as � > 8, m < 1. Time (t) decreases and � 

increases as T increases. Since  
�
� ≠ 0, hence anisotropy is maintained throughout. However at � = 1, the model (3.9) isotropizes. 

Hence the model (3.9) represents inflationary scenario. 
We have observed that in presence of magnetic field, pressure �, energy density 8 and cosmological constant Λ varies from 

negative to zero at late times. The gravitational constant G varies from zero to negative infinity when cosmic time tends to 

infinity. 
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